비정상 확률과정
- 평균수준이 시간대에 따라 다름
- -> 결정적Deterministic 추세: regression
- -> 확률적Stochastic 추세: 차분 & ADF
- 추세Trend 지님
- -> 결정적 계절추세: regression
- -> 확률적 계절추세: 계절 차분
- 계절성Seasonality 지님
- 분산 변함
Type of Non-stationary Process
- E[yt]≠0 and change with time: 평균수준이
- Var[yt] change with time -> Ranom Walk
Random Walk
- 확률과정
- ϵ=white noise,α=intercept
- 1) Wt=Wt−1+ϵt: Pure Random Walk
- 2) ST: Wt=α+Wt−1+ϵt: Random Walk with Drift
- 3) Wt=α+Wt−1+βt+ϵt: Random Walk with Drift and Derministic Trend
- cf) DT: Yt=α+βt+ϵt: Deterministic Trend

1. A Random Walk with or without a drift
- Differencing: ∇Wt=Wt−Wt−1=ϵt or α+ϵt
- Detrending:
- Yt=α+βt+ϵt→∇Yt=
1 2 3 4
| import statsmodels.api as sm df = sm.datasets.get_rdataset("CanPop", package="carData").data df.plot(x='year', y='population') plt.show()
|
png
1 2 3
| df_diff1 = df - df.shift() df_diff1.plot()
|
<matplotlib.axes._subplots.AxesSubplot at 0x7f8892339390>
png
reference